Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Mingqiangen_US
dc.contributor.authorWang, Boen_US
dc.contributor.authorLiu, Heng-Juien_US
dc.contributor.authorHuang, Yen-Linen_US
dc.contributor.authorZhang, Jingminen_US
dc.contributor.authorMa, Xiumeien_US
dc.contributor.authorLiu, Kaihuien_US
dc.contributor.authorYu, Dapengen_US
dc.contributor.authorChu, Ying-Haoen_US
dc.contributor.authorChen, Long-Qingen_US
dc.contributor.authorGao, Pengen_US
dc.date.accessioned2019-08-02T02:18:37Z-
dc.date.available2019-08-02T02:18:37Z-
dc.date.issued2019-06-01en_US
dc.identifier.issn1359-6454en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.actamat.2019.04.003en_US
dc.identifier.urihttp://hdl.handle.net/11536/152411-
dc.description.abstractReversible switching of non-180 degrees ferroelastic domains that largely alters the local strain distribution enables many electromechanical, electromagnetic and electroacoustic applications. However, in thin films, the ferroelastic domain walls are usually believed to be immobile because of the interface clamping and/or dislocation pinning. Here, using in situ and aberration-corrected transmission electron microscopy, we directly observe reversible switching of individual 90 degrees domains in dislocation-free PbTiO3 thin films and uncover the weakened interface clamping effect. We find the tetragonality is suppressed to similar to 1.017 while the polarization vectors rotate 45 degrees in the a-domain near the interface. These huge structural distortions at the interface is mainly responsible for the weakened clamping effect and thus the ability to switch ferroelastic domains. The switching is fully reversible (i.e., either electric field or mechanical stress can re-establish the erased domain) regardless of polarization orientation of the c-domain matrix. Phase-field modeling also shows excellent agreement with experimental observations. Our study reveals the mechanism of controllable and reversible ferroelastic domain switching, enabling the design of new actuators, sensors, and electromagnetic devices. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFerroelasticen_US
dc.subjectDomain switchingen_US
dc.subjectIn situ transmission electron microscopy (TEM)en_US
dc.subjectAtomic structureen_US
dc.subjectInterfacesen_US
dc.titleDirect observation of weakened interface clamping effect enabled ferroelastic domain switchingen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.actamat.2019.04.003en_US
dc.identifier.journalACTA MATERIALIAen_US
dc.citation.volume171en_US
dc.citation.spage184en_US
dc.citation.epage189en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000470046400018en_US
dc.citation.woscount0en_US
Appears in Collections:Articles