完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGuo, Zhen-Chenen_US
dc.contributor.authorChu, Eric King-Wahen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2019-08-02T02:18:38Z-
dc.date.available2019-08-02T02:18:38Z-
dc.date.issued2019-09-01en_US
dc.identifier.issn0025-5718en_US
dc.identifier.urihttp://dx.doi.org/10.1090/mcom/3398en_US
dc.identifier.urihttp://hdl.handle.net/11536/152424-
dc.description.abstractThe discretized Bethe-Salpeter eigenvalue problem arises in the Green's function evaluation in many body physics and quantum chemistry. Discretization leads to a matrix eigenvalue problem for H is an element of C-2n(x2n) with a Hamiltonian-like structure. After an appropriate transformation of H to a standard symplectic form, the structure-preserving doubling algorithm, originally for algebraic Riccati equations, is extended for the discretized Bethe-Salpeter eigenvalue problem. Potential breakdowns of the algorithm, due to the ill condition or singularity of certain matrices, can be avoided with a double-Cayley transform or a three-recursion remedy. A detailed convergence analysis is conducted for the proposed algorithm, especially on the benign effects of the double-Cayley transform. Numerical results are presented to demonstrate the efficiency and the structure-preserving nature of the algorithm.en_US
dc.language.isoen_USen_US
dc.subjectBethe-Salpeter eigenvalue problemen_US
dc.subjectCayley transformen_US
dc.subjectdoubling algorithmen_US
dc.titleDOUBLING ALGORITHM FOR THE DISCRETIZED BETHE-SALPETER EIGENVALUE PROBLEMen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/mcom/3398en_US
dc.identifier.journalMATHEMATICS OF COMPUTATIONen_US
dc.citation.volume88en_US
dc.citation.issue319en_US
dc.citation.spage2325en_US
dc.citation.epage2350en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000470321000010en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文