完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Guan-Tingen_US
dc.contributor.authorSantoso, Patrisia Sherrylen_US
dc.contributor.authorLin, Che-Tsungen_US
dc.contributor.authorTsai, Chia-Chien_US
dc.contributor.authorGuo, Jiun-Inen_US
dc.date.accessioned2019-08-02T02:24:15Z-
dc.date.available2019-08-02T02:24:15Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-9-8814-7685-2en_US
dc.identifier.issn2309-9402en_US
dc.identifier.urihttp://hdl.handle.net/11536/152426-
dc.description.abstractWe construct a robust road mark detector that achieves high accuracy with real-time processing performance ( 32 fps) under nVidia Titan-X GPU. We combine one stage deep learning detector with auxiliary CNN classifiers as a robust road marks detector. We found out that one stage detector not only detects multiple objects via single inference efficiently, but also remains a good accuracy in performance perspective. However, to make it better, we add an extra CNN classifier as the back part of the proposed architecture to reduce false positive and get better accuracy. The proposed detector can achieve 86.8% mAP in our in-house six-class road mark database.en_US
dc.language.isoen_USen_US
dc.subjectRoad-mark detectionen_US
dc.subjectReal-timeen_US
dc.subjectCNNsen_US
dc.titleOne Stage Detection Network with an Auxiliary Classifier for Real-Time Road Marks Detectionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC)en_US
dc.citation.spage1379en_US
dc.citation.epage1382en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000468383400222en_US
dc.citation.woscount0en_US
顯示於類別:會議論文