Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Chia-Chien_US
dc.contributor.authorTseng, Ching-Kanen_US
dc.contributor.authorTang, Ho-Chiaen_US
dc.contributor.authorGuo, Jiun-Inen_US
dc.date.accessioned2019-08-02T02:24:16Z-
dc.date.available2019-08-02T02:24:16Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-9-8814-7685-2en_US
dc.identifier.issn2309-9402en_US
dc.identifier.urihttp://hdl.handle.net/11536/152430-
dc.description.abstractThis paper proposes an optimized vehicle detection and classification method based on deep learning technology for intelligent transportation applications. We optimize the Convolutional Neural Network (CNN) architecture by fine-tuning the existing CNN architecture for the intelligent transportation applications. The proposed design achieves the accuracy of miss rate around 10% when FPPI is 0.1. Realized on nVidia Titan-X GPU, the proposed design can reach the performance about 720x480 video under different weather condition (day, night, raining) at 25fps. The proposed model can achieve 90% accuracy on three target vehicle classes including small vehicles (Sedan, SUV, Van), big vehicles (Bus) and Trucks.en_US
dc.language.isoen_USen_US
dc.titleVehicle Detection and Classification based on Deep Neural Network for Intelligent Transportation Applicationsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC)en_US
dc.citation.spage1605en_US
dc.citation.epage1608en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000468383400260en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper