Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Hsuan-Yinen_US
dc.contributor.authorMoser, Stefan M.en_US
dc.contributor.authorChen, Po-Ningen_US
dc.date.accessioned2019-08-02T02:24:16Z-
dc.date.available2019-08-02T02:24:16Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-4-8855-2318-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/152434-
dc.description.abstractAn extension from the pairwise Hamming distance to the r-wise Hamming distance is presented. It can be used to fully characterize the maximum-likelihood decoding (MLD) error of an arbitrary code over the binary erasure channel (BEC). By noting that good codes always have large minimum r-wise Hamming distances for all r, a new design criterion for a code is introduced: the minimum r-wise Hamming distance. We then prove an upper bound for the minimum r-wise Hamming distance of an arbitrary code, called the generalized Plotkin bound, and provide a class of (nonlinear) codes that achieve the bound for every r.en_US
dc.language.isoen_USen_US
dc.titleConnections Between the Error Probability and the r-wise Hamming Distancesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF 2018 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2018)en_US
dc.citation.spage130en_US
dc.citation.epage134en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000468678100027en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper