Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsueh, Bo-Yangen_US
dc.contributor.authorLi, Weien_US
dc.contributor.authorWu, I-Chenen_US
dc.date.accessioned2019-08-02T02:24:19Z-
dc.date.available2019-08-02T02:24:19Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-1975-5en_US
dc.identifier.issn2472-6737en_US
dc.identifier.urihttp://dx.doi.org/10.1109/WACV.2019.00052en_US
dc.identifier.urihttp://hdl.handle.net/11536/152464-
dc.description.abstractLearning rate scheduler has been a critical issue in the deep neural network training. Several schedulers and methods have been proposed, including step decay scheduler, adaptive method, cosine scheduler and cyclical scheduler. This paper proposes a new scheduling method, named hyperbolic-tangent decay (HTD). We run experiments on several benchmarks such as: ResNet, Wide ResNet and DenseNet for CIFAR-10 and CIFAR-100 datasets, LSTM for PAMAP2 dataset, ResNet on ImageNet and Fashion-MNIST datasets. In our experiments, HTD outperforms step decay and cosine scheduler in nearly all cases, while requiring less hyperparameters than step decay, and more flexible than cosine scheduler. Code is available at https: //github.com/BIGBALLON/HTD.en_US
dc.language.isoen_USen_US
dc.titleStochastic Gradient Descent with Hyperbolic-Tangent Decay on Classificationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/WACV.2019.00052en_US
dc.identifier.journal2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV)en_US
dc.citation.spage435en_US
dc.citation.epage442en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000469423400045en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper