Full metadata record
DC FieldValueLanguage
dc.contributor.authorHe, Jialeen_US
dc.contributor.authorHsu, Chin-Weien_US
dc.contributor.authorZhou, Qien_US
dc.contributor.authorTang, Mingen_US
dc.contributor.authorFu, Songnianen_US
dc.contributor.authorLiu, Demingen_US
dc.contributor.authorDeng, Leien_US
dc.contributor.authorChang, Gee-Kungen_US
dc.date.accessioned2019-08-02T02:24:20Z-
dc.date.available2019-08-02T02:24:20Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-9435-8053-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/152470-
dc.description.abstractWe experimentally demonstrate a high precision 3D indoor visible light positioning system utilizing two-layer machine learning technique. The measured average positioning resolution of <1cm in an unit volume of 0.9 x 1 x 0.4 m(3).en_US
dc.language.isoen_USen_US
dc.titleDemonstration of high precision 3D indoor positioning system based on two-layer ANN machine learning techniqueen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000469837300446en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper