完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLo, Tzu-Yunen_US
dc.contributor.authorWei, Pei-Yinen_US
dc.contributor.authorYen, Chia-Hengen_US
dc.contributor.authorLirng, Jiing-Fengen_US
dc.contributor.authorYang, Muh-Hwaen_US
dc.contributor.authorChu, Pen-Yuanen_US
dc.contributor.authorHo, Shinn-Yingen_US
dc.date.accessioned2019-08-02T02:24:20Z-
dc.date.available2019-08-02T02:24:20Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-1-4503-6584-0en_US
dc.identifier.urihttp://dx.doi.org/10.1145/3297097.3297108en_US
dc.identifier.urihttp://hdl.handle.net/11536/152477-
dc.description.abstractThe current medical method for determining whether the malignant tumor of the head and neck metastasizes to the lymph is to interpret the pathological section of the patient's lymph. This study proposes a support vector machine (SVM) based method Pred-Meta to predict metastasis of a malignant tumor from a patient's computed tomography (CT) image. Pred-Meta utilizes three feature types, including texture, morphology, and grayscale, and an optimal feature selection method cooperated with SVM. The data set consists of 75 samples from 70 patients in head and neck cancer provided by Taipei Veterans General Hospital of Taiwan with a record of lymphatic metastasis. Pred-Meta using leave-one-out cross-validation achieved 100% in predicting metastasis. The merit of the Pred-Meta method is its non-invasiveness and low cost. Auxiliary physicians screen out patients with high risk of diversion in the early stages to help plan treatment guidelines. The limitation of Pred-Meta suffers from the small number of training samples. It is expected that Pred-Meta would perform better in testing independent cohort when the number of training samples significantly increases.en_US
dc.language.isoen_USen_US
dc.subjectMachine learningen_US
dc.subjectSupport vector machineen_US
dc.subjectMetastasisen_US
dc.subjectHead and neck canceren_US
dc.titlePrediction of Metastasis in Head and Neck Cancer from Computed Tomography Imagesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/3297097.3297108en_US
dc.identifier.journalICRAI 2018: PROCEEDINGS OF 2018 4TH INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE -en_US
dc.citation.spage18en_US
dc.citation.epage23en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000470228200004en_US
dc.citation.woscount0en_US
顯示於類別:會議論文