完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Ning-Chien_US
dc.contributor.authorChen, Szu-Yingen_US
dc.contributor.authorWu, Kai-Chiangen_US
dc.date.accessioned2019-08-02T02:24:20Z-
dc.date.available2019-08-02T02:24:20Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-3-9819263-2-3en_US
dc.identifier.issn1530-1591en_US
dc.identifier.urihttp://hdl.handle.net/11536/152478-
dc.description.abstractApproximate computing is an emerging strategy which trades computational accuracy for computational cost in terms of performance, energy, and/or area. In this paper, we propose a novel sensor-based approximate adder for high-performance energy-efficient arithmetic computation, while considering the accuracy requirement of error-tolerant applications. This is the first work using in-situ sensors for approximate adder design, based on monitoring online transition activity on the carry chain and speculating on carry propagation/truncation. On top of a fully-optimized ripple-carry adder, the performance of our adder is enhanced by 2.17X. When applied in error-tolerant applications such as image processing and handwritten digit recognition, our approximate adder leads to very promising quality of results compared to the case when an accurate adder is used.en_US
dc.language.isoen_USen_US
dc.titleSensor-Based Approximate Adder Design for Accelerating Error-Tolerant and Deep-Learning Applicationsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE)en_US
dc.citation.spage692en_US
dc.citation.epage697en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000470666100128en_US
dc.citation.woscount0en_US
顯示於類別:會議論文