Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Feng-Keen_US
dc.contributor.authorChen, Chien-Chihen_US
dc.contributor.authorChen, Tien-Fuen_US
dc.contributor.authorLin, Tay-Jyien_US
dc.date.accessioned2019-08-02T02:24:21Z-
dc.date.available2019-08-02T02:24:21Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-0851-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/152481-
dc.description.abstractIn sensing systems in various environments, such as environmental monitoring and smart power grid systems, sensors are usually unreliable due to improper calibration, low battery levels or hardware failures of the devices. Unreliability may cause users to make erroneous decisions or inaccurate analysis. In this paper, we propose a detect system architecture to avoid the abnormality among the sensors based on machine learning. The detection mechanism has to be in real-time by exploring the correlation among the sensors, and predicting the supplemental values via other correlated sensors. We analyze the fault data pattern in order to classify the fault type of faulty sensors and also to recover the faulty sensors for improving the reliability of sensing systems.en_US
dc.language.isoen_USen_US
dc.subjectIoTen_US
dc.subjectfault detectionen_US
dc.subjectsensorsen_US
dc.subjectsensing applicationsen_US
dc.titleSensor Abnormal Detection and Recovery Using Machine Learning for IoT Sensing Systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA)en_US
dc.citation.spage501en_US
dc.citation.epage505en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000470675700094en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper