Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeng, Yu-Hsiangen_US
dc.contributor.authorChuang, Chia-Chuanen_US
dc.contributor.authorWu, Zhou-Jinen_US
dc.contributor.authorChou, Chia-Weien_US
dc.contributor.authorChen, Hui-Shanen_US
dc.contributor.authorChang, Ting-Chiaen_US
dc.contributor.authorPan, Yi-Lunen_US
dc.contributor.authorCheng, Hsin-Tienen_US
dc.contributor.authorChung, Chih-Chien_US
dc.contributor.authorLin, Ken-Yuen_US
dc.date.accessioned2019-08-02T02:24:21Z-
dc.date.available2019-08-02T02:24:21Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-1-4503-6570-3en_US
dc.identifier.urihttp://dx.doi.org/10.1145/3305275.3305280en_US
dc.identifier.urihttp://hdl.handle.net/11536/152484-
dc.description.abstractThe hyperparameters tuning of machine learning has always been a difficult and time-consuming task in deep learning area. In many practical applications, the hyperparameter tuning directly affects the accuracy. Therefore, the tuning optimization of hyperparameters is an important topic. At present, hyperparameters can only be set manually based on experience, and use Violent Enumeration, Random Search or through Grid Search to try and error, lack of effective automatic search parameters. In this study, we proposed a machine learning hyperparameter fine tuning service on dynamic cloud resource allocation system, which leverages several mainstream hyperparameter tuning methods such as flyperopt and Optunity. In the meanwhile, various tuning methods are measured and compared by example application in this work. Finally, we dedicated actual case - Heart Sounds, and then tested it. In order to verify that the system service can not only automate the task of tuning, but also break through the limitation of the number of adjustable parameters. Furthermore the proposed hyperparameter fine tune system makes optimization process more efficient.en_US
dc.language.isoen_USen_US
dc.subjectHyperparametersen_US
dc.subjectRandom Searchen_US
dc.subjectGrid Searchen_US
dc.subjectHyperopten_US
dc.subjectOptunityen_US
dc.titleMachine Learning Hyperparameter Fine Tuning Service on Dynamic Cloud Resource Allocation System - taking Heart Sounds as an Exampleen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/3305275.3305280en_US
dc.identifier.journalISBDAI '18: PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON BIG DATA AND ARTIFICIAL INTELLIGENCEen_US
dc.citation.spage22en_US
dc.citation.epage28en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000470968700005en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper