Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorLeu, Dar-Renen_US
dc.date.accessioned2019-09-02T07:46:11Z-
dc.date.available2019-09-02T07:46:11Z-
dc.date.issued2019-07-01en_US
dc.identifier.issn1939-1404en_US
dc.identifier.urihttp://dx.doi.org/10.1109/JSTARS.2019.2908690en_US
dc.identifier.urihttp://hdl.handle.net/11536/152593-
dc.description.abstractIn a seismogram, there exist many kinds of wavelets. The reflected wavelet from the gas sand zone has a different shape with other layers. Usually, the information of each wavelet is weak and unknown, and the unsupervised classification method is applied to the clustering of the wavelets. Using the shape structure of the wavelet, syntactic pattern recognition is applied to the clustering. The extracted wavelets can be represented as strings of symbols. Levenshtein distance is used to calculate the distance between the two strings. Bottom-up and top-down hierarchical clustering methods are used in the construction of the dendrogram. The top-down hierarchical clustering by the recursive method is proposed. A new pseudo F-statistics is proposed to decide the optimal number of clusters. From the experimental results in simulated and real seismograms, the wavelets on the gas sand zone can be detected successfully. It can improve the seismic interpretation.en_US
dc.language.isoen_USen_US
dc.subjectHierarchical clusteringen_US
dc.subjectLevenshtein distanceen_US
dc.subjectpattern recognitionen_US
dc.subjectseismogramen_US
dc.subjectwaveleten_US
dc.titleSyntactic Pattern Recognition for Wavelet Clustering in Seismogramen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/JSTARS.2019.2908690en_US
dc.identifier.journalIEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSINGen_US
dc.citation.volume12en_US
dc.citation.issue7en_US
dc.citation.spage2453en_US
dc.citation.epage2461en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000480354800044en_US
dc.citation.woscount0en_US
Appears in Collections:Articles