Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Hao-Wenen_US
dc.contributor.authorZhang, Huotianen_US
dc.contributor.authorLin, Yu-Cheen_US
dc.contributor.authorShe, Nian-Zuen_US
dc.contributor.authorWang, Ruien_US
dc.contributor.authorChen, Chung-Haoen_US
dc.contributor.authorYuan, Junen_US
dc.contributor.authorTsao, Cheng-Sien_US
dc.contributor.authorYabushita, Atsushien_US
dc.contributor.authorZou, Yingpingen_US
dc.contributor.authorGao, Fengen_US
dc.contributor.authorCheng, Peien_US
dc.contributor.authorWei, Kung-Hwaen_US
dc.contributor.authorYang, Yangen_US
dc.date.accessioned2019-09-02T07:46:14Z-
dc.date.available2019-09-02T07:46:14Z-
dc.date.issued2019-08-01en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acs.nanolett.9b01344en_US
dc.identifier.urihttp://hdl.handle.net/11536/152637-
dc.description.abstractSolution-processed organic photovoltaics (OPVs) based on bulk-heterojunctions have gained significant attention to alleviate the increasing demend of fossil fuel in the past two decades. OPVs combined of a wide bandgap polymer donor and a narrow bandgap nonfullerene acceptor show potential to achieve high performance. However, there are still two reasons to limit the OPVs performance. One, although this combination can expand from the ultraviolet to the near-infrared region, the overall external quantum efficiency of the device suffers low values. The other one is the low open-circuit voltage (V-OC) of devices resulting from the relatively downshifted lowest unoccupied molecular orbital (LUMO) of the narrow bandgap. Herein, the approach to select and incorporate a versatile third component into the active layer is reported. A third component with a bandgap larger than that of the acceptor, and absorption spectra and LUMO levels lying within that of the donor and acceptor, is demonstrated to be effective to conquer these issues. As a result, the power conversion efficiencies (PCEs) are enhanced by the elevated short-circuit current and V-OC; the champion PCEs are 11.1% and 13.1% for PTB7-Th:IEICO-4F based and PBDB-T:Y1 based solar cells, respectively.en_US
dc.language.isoen_USen_US
dc.subjectOrganic photovoltaicsen_US
dc.subjectnonfullereneen_US
dc.subjectternary blenden_US
dc.subjectcharge transferen_US
dc.subjectenergy transferen_US
dc.subjectcharge extractionen_US
dc.titleRealizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Componenten_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acs.nanolett.9b01344en_US
dc.identifier.journalNANO LETTERSen_US
dc.citation.volume19en_US
dc.citation.issue8en_US
dc.citation.spage5053en_US
dc.citation.epage5061en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000481563800032en_US
dc.citation.woscount0en_US
Appears in Collections:Articles