Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu, Peijunen_US
dc.contributor.authorZhuang, Yuen_US
dc.contributor.authorChou, Jyh-Pinen_US
dc.contributor.authorWei, Jieen_US
dc.contributor.authorLo, Yu-Chiehen_US
dc.contributor.authorHu, Aliceen_US
dc.date.accessioned2019-09-02T07:46:17Z-
dc.date.available2019-09-02T07:46:17Z-
dc.date.issued2019-07-29en_US
dc.identifier.issn2045-2322en_US
dc.identifier.urihttp://dx.doi.org/10.1038/s41598-019-47223-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/152679-
dc.description.abstractStacking faults, as defects of disordered crystallographic planes, are one of the most important slipping mechanisms in the commonly seen lattice, face-centered cubic (FCC). Such defects can initiate twinning which strengthens mechanical properties, e.g. twinning-induced plasticity (TWIP), of high entropy alloys (HEAs) at cryogenic temperatures. In this work, by using density functional theory (DFT), the twinning initiated from stacking faults is discussed with regard to two different solute elements, Al and Mo, in the FeNiCoCr HEAs. Our results show that adding aluminum (Al) has noticeable enhancement of twinnability while molybdenum (Mo) only induces more stacking faults in the FeNiCoCr-based HEAs.en_US
dc.language.isoen_USen_US
dc.titleThe influence of dilute aluminum and molybdenum on stacking fault and twin formation in FeNiCoCr-based high entropy alloys based on density functional theoryen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41598-019-47223-3en_US
dc.identifier.journalSCIENTIFIC REPORTSen_US
dc.citation.volume9en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000477701800043en_US
dc.citation.woscount0en_US
Appears in Collections:Articles