完整後設資料紀錄
DC 欄位語言
dc.contributor.authorRosenstein, Baruchen_US
dc.contributor.authorLi, Dingpingen_US
dc.contributor.authorMa, Tianxingen_US
dc.contributor.authorKao, H. C.en_US
dc.date.accessioned2019-10-05T00:08:39Z-
dc.date.available2019-10-05T00:08:39Z-
dc.date.issued2019-09-18en_US
dc.identifier.issn2469-9950en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.100.125140en_US
dc.identifier.urihttp://hdl.handle.net/11536/152799-
dc.description.abstractMean field approach, although a generally reliable tool that captures major short-range correlations, often fails in symmetric low dimensional strongly correlated electronic systems like those described by the Hubbard model. In these situations a symmetry is almost broken. The problem is linked to the restoration of the symmetry due to strong fluctuations (both quantum and thermal) on all scales. The restoration of symmetry in statistical models of scalar order parameter fields was treated recently successfully on the Gaussian approximation level by symmetrization of the correlators. Here the idea is extended to fermionic systems in which the order parameter is composite. Furthermore, the precision of the correlators can be improved perturbatively. Such a scheme (based on covariant Gaussian approximation) is demonstrated on the one dimensional (1D) and 2D one band Hubbard models by comparison of the correlator with exact diagonalization and MC simulations, respectively.en_US
dc.language.isoen_USen_US
dc.titleMean field theory of short-range order in strongly correlated low dimensional electronic systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevB.100.125140en_US
dc.identifier.journalPHYSICAL REVIEW Ben_US
dc.citation.volume100en_US
dc.citation.issue12en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000486639400003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文