標題: Logistic Regression Method for Ligand Discovery
作者: Chen, Chian
Wang, Hsiuying
統計學研究所
Institute of Statistics
關鍵字: docking;logistic regression;protein-specific scoring method
公開日期: 1-一月-1970
摘要: Protein-based virtual screening is integral to the modern drug discovery process. Most protein-based virtual screening experiments are performed using docking programs. The accuracy of a docking program strongly relies on the incorporated scoring function used, which is based on various energy terms. The existing scoring functions deal with the energy terms that use the equal weight function or other weight functions, which do not depend on characteristics of the protein. To improve the existing methods, Lu and Wang proposed a protein-specific scoring function based on a regression analysis that was shown to have higher performance than the existing methods. In this study, we propose a protein-specific scoring approach to select potential ligands based on logistic regression analysis. The performance of our method was evaluated using the Directory of Useful Decoys docked data set, which contains 40 protein targets. The results showed that the proposed method can increase the enrichment factors for most of the 40 protein targets.
URI: http://dx.doi.org/10.1089/cmb.2019.0232
http://hdl.handle.net/11536/152805
ISSN: 1066-5277
DOI: 10.1089/cmb.2019.0232
期刊: JOURNAL OF COMPUTATIONAL BIOLOGY
起始頁: 0
結束頁: 0
顯示於類別:期刊論文