完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Bing-Feien_US
dc.contributor.authorLin, Chun-Hsienen_US
dc.date.accessioned2019-10-05T00:08:41Z-
dc.date.available2019-10-05T00:08:41Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2019.2932746en_US
dc.identifier.urihttp://hdl.handle.net/11536/152806-
dc.description.abstractSince the permanent magnet synchronous motor system in this research needs about 40 ms to finish a control cycle, such a long delay in time strongly causes the bad performance for the conventional controllers, especially for position control. To well control the speed and position, an adaptive neural predictive control is proposed. A two-layer recursive neural network is employed as a speed predictor, and an extended Kalman filter is utilized to tune the parameters of the predictor adaptively. Chaos optimization algorithm and Newton-Raphson optimization are combined to solve the problem of predictive control. As for the speed control, the proposed method shows better performance. The position control is designed based on the speed control. Due to the physical limitation of the plant, the steady state error is still large. Hence, a fuzzy compensator is applied. From the experiment, the error is reduced obviously.en_US
dc.language.isoen_USen_US
dc.subjectModel predictive controlen_US
dc.subjectneural networken_US
dc.subjectnon-linear optimizationen_US
dc.subjectextended Kalman filteren_US
dc.subjectfuzzy ruleen_US
dc.titleAdaptive Neural Predictive Control for Permanent Magnet Synchronous Motor Systems With Long Delay Timeen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2019.2932746en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume7en_US
dc.citation.spage108061en_US
dc.citation.epage108069en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000481980800026en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文