完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Ligangen_US
dc.contributor.authorRao, Meghaen_US
dc.contributor.authorDiethelm, Stefanen_US
dc.contributor.authorLin, Tzu-Enen_US
dc.contributor.authorZhang, Hanfeien_US
dc.contributor.authorHagen, Ankeen_US
dc.contributor.authorMarechal, Francoisen_US
dc.contributor.authorVan Herle, Janen_US
dc.date.accessioned2019-10-05T00:08:41Z-
dc.date.available2019-10-05T00:08:41Z-
dc.date.issued2019-09-15en_US
dc.identifier.issn0306-2619en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.apenergy.2019.05.098en_US
dc.identifier.urihttp://hdl.handle.net/11536/152815-
dc.description.abstractThis paper presents a model-based investigation to handle the fundamental issues for the design of co-electrolysis based power-to-methane at the levels of both the stack and system: the role of CO2 in co-electrolysis, the benefits of employing pressurized stack operation and the conditions of promoting internal methanation. Results show that the electrochemical reaction of co-electrolysis is dominated by H2O splitting while CO2 is converted via reverse water-gas shift reaction. Increasing CO2 feed fraction mainly enlarges the concentration and cathode-activation overpotentials. Internal methanation in the stack can be effectively promoted by pressurized operation under high reactant utilization with low current density and large stack cooling. For the operation of a single stack, methane fraction of dry gas at the cathode outlet can reach as high as 30 vol.% (at 30 bar and high flowrate of sweep gas), which is, unfortunately, not preferred for enhancing system efficiency due to the penalty from the pressurization of sweep gas. The number drops down to 15 vol.% (at 15 bar) to achieve the highest system efficiency (at 0.27 A/cm(2)). The internal methanation can serve as an effective internal heat source to maintain stack temperature (thus enhancing electrochemistry), particularly at a small current density. This enables the co-electrolysis based power-to-methane to.achieve higher efficiency than the steam-electrolysis based (90% vs 86% on higher heating value, or 83% vs 79% on lower heating value without heat and converter losses).en_US
dc.language.isoen_USen_US
dc.subjectEnergy storageen_US
dc.subjectPower-to-methaneen_US
dc.subjectSolid-oxide eletrolyzeren_US
dc.subjectCo-electrolysisen_US
dc.subjectCO2 utilizationen_US
dc.subjectPressurized operationen_US
dc.subjectInternal methanationen_US
dc.titlePower-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apenergy.2019.05.098en_US
dc.identifier.journalAPPLIED ENERGYen_US
dc.citation.volume250en_US
dc.citation.spage1432en_US
dc.citation.epage1445en_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.identifier.wosnumberWOS:000482245500018en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文