Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Eric-Juweien_US
dc.contributor.authorChou, Kuang-Penen_US
dc.contributor.authorRajora, Shantanuen_US
dc.contributor.authorJin, Bo-Haoen_US
dc.contributor.authorTanveer, M.en_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorYoung, Ku-Youngen_US
dc.contributor.authorLin, Wen-Chiehen_US
dc.contributor.authorPrasad, Mukeshen_US
dc.date.accessioned2019-10-05T00:08:42Z-
dc.date.available2019-10-05T00:08:42Z-
dc.date.issued2019-07-01en_US
dc.identifier.issn0167-8655en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.patrec.2019.03.006en_US
dc.identifier.urihttp://hdl.handle.net/11536/152818-
dc.description.abstractThis paper proposes a two-layer Convolutional Neural Network (CNN) to learn the high-level features which utilizes to the face identification via sparse representation. Feature extraction plays a vital role in real-world pattern recognition and classification tasks. The details description of the given input face image, significantly improve the performance of the facial recognition system. Sparse Representation Classifier (SRC) is a popular face classifier that sparsely represents the face image by a subset of training data, which is known as insensitive to the choice of feature space. The proposed method shows the performance improvement of SRC via a precisely selected feature exactor. The experimental results show that the proposed method outperforms other methods on given datasets. (C) 2019 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFace recognitionen_US
dc.subjectDeep learningen_US
dc.subjectFeature extractionen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectSparse Representation Classifieren_US
dc.titleDeep Sparse Representation Classifier for facial recognition and detection systemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patrec.2019.03.006en_US
dc.identifier.journalPATTERN RECOGNITION LETTERSen_US
dc.citation.volume125en_US
dc.citation.spage71en_US
dc.citation.epage77en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000482374500011en_US
dc.citation.woscount1en_US
Appears in Collections:Articles