完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Cheng, Eric-Juwei | en_US |
| dc.contributor.author | Chou, Kuang-Pen | en_US |
| dc.contributor.author | Rajora, Shantanu | en_US |
| dc.contributor.author | Jin, Bo-Hao | en_US |
| dc.contributor.author | Tanveer, M. | en_US |
| dc.contributor.author | Lin, Chin-Teng | en_US |
| dc.contributor.author | Young, Ku-Young | en_US |
| dc.contributor.author | Lin, Wen-Chieh | en_US |
| dc.contributor.author | Prasad, Mukesh | en_US |
| dc.date.accessioned | 2019-10-05T00:08:42Z | - |
| dc.date.available | 2019-10-05T00:08:42Z | - |
| dc.date.issued | 2019-07-01 | en_US |
| dc.identifier.issn | 0167-8655 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1016/j.patrec.2019.03.006 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/152818 | - |
| dc.description.abstract | This paper proposes a two-layer Convolutional Neural Network (CNN) to learn the high-level features which utilizes to the face identification via sparse representation. Feature extraction plays a vital role in real-world pattern recognition and classification tasks. The details description of the given input face image, significantly improve the performance of the facial recognition system. Sparse Representation Classifier (SRC) is a popular face classifier that sparsely represents the face image by a subset of training data, which is known as insensitive to the choice of feature space. The proposed method shows the performance improvement of SRC via a precisely selected feature exactor. The experimental results show that the proposed method outperforms other methods on given datasets. (C) 2019 Elsevier B.V. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | Face recognition | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | Feature extraction | en_US |
| dc.subject | Convolutional Neural Network | en_US |
| dc.subject | Sparse Representation Classifier | en_US |
| dc.title | Deep Sparse Representation Classifier for facial recognition and detection system | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.patrec.2019.03.006 | en_US |
| dc.identifier.journal | PATTERN RECOGNITION LETTERS | en_US |
| dc.citation.volume | 125 | en_US |
| dc.citation.spage | 71 | en_US |
| dc.citation.epage | 77 | en_US |
| dc.contributor.department | 資訊工程學系 | zh_TW |
| dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
| dc.contributor.department | Department of Computer Science | en_US |
| dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
| dc.identifier.wosnumber | WOS:000482374500011 | en_US |
| dc.citation.woscount | 1 | en_US |
| 顯示於類別: | 期刊論文 | |

