Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Chiun-Chuanen_US
dc.contributor.authorHuang, Yin-Liangen_US
dc.contributor.authorHung, Li-Changen_US
dc.contributor.authorWu, Chang-Hongen_US
dc.date.accessioned2019-10-05T00:08:43Z-
dc.date.available2019-10-05T00:08:43Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1534-0392en_US
dc.identifier.urihttp://dx.doi.org/10.3934/cpaa.2020001en_US
dc.identifier.urihttp://hdl.handle.net/11536/152834-
dc.description.abstractWe are concerned with the coexistence states of the diffusive Lotka-Volterra system of two competing species when the growth rates of the two species depend periodically on the spacial variable. For the one-dimensional problem, we employ the generalized Jacobi elliptic function method to find semi-exact solutions under certain conditions on the parameters. In addition, we use the sine function to construct a pair of upper and lower solutions and obtain a solution of the above-mentioned system. Next, we provide a sufficient condition for the existence of pulsating fronts connecting two semi-trivial states by applying the abstract theory regarding monotone semiflows. Some numerical simulations are also included.en_US
dc.language.isoen_USen_US
dc.subjectSemi-exact solutionsen_US
dc.subjecttraveling wave solutionsen_US
dc.subjectreaction-diffusion equationsen_US
dc.titleSEMI-EXACT SOLUTIONS AND PULSATING FRONTS FOR LOTKA-VOLTERRA SYSTEMS OF TWO COMPETING SPECIES IN SPATIALLY PERIODIC HABITATSen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/cpaa.2020001en_US
dc.identifier.journalCOMMUNICATIONS ON PURE AND APPLIED ANALYSISen_US
dc.citation.volume19en_US
dc.citation.issue1en_US
dc.citation.spage1en_US
dc.citation.epage18en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000475504300001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles