Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Chiun-Chuan | en_US |
dc.contributor.author | Huang, Yin-Liang | en_US |
dc.contributor.author | Hung, Li-Chang | en_US |
dc.contributor.author | Wu, Chang-Hong | en_US |
dc.date.accessioned | 2019-10-05T00:08:43Z | - |
dc.date.available | 2019-10-05T00:08:43Z | - |
dc.date.issued | 2020-01-01 | en_US |
dc.identifier.issn | 1534-0392 | en_US |
dc.identifier.uri | http://dx.doi.org/10.3934/cpaa.2020001 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/152834 | - |
dc.description.abstract | We are concerned with the coexistence states of the diffusive Lotka-Volterra system of two competing species when the growth rates of the two species depend periodically on the spacial variable. For the one-dimensional problem, we employ the generalized Jacobi elliptic function method to find semi-exact solutions under certain conditions on the parameters. In addition, we use the sine function to construct a pair of upper and lower solutions and obtain a solution of the above-mentioned system. Next, we provide a sufficient condition for the existence of pulsating fronts connecting two semi-trivial states by applying the abstract theory regarding monotone semiflows. Some numerical simulations are also included. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Semi-exact solutions | en_US |
dc.subject | traveling wave solutions | en_US |
dc.subject | reaction-diffusion equations | en_US |
dc.title | SEMI-EXACT SOLUTIONS AND PULSATING FRONTS FOR LOTKA-VOLTERRA SYSTEMS OF TWO COMPETING SPECIES IN SPATIALLY PERIODIC HABITATS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3934/cpaa.2020001 | en_US |
dc.identifier.journal | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS | en_US |
dc.citation.volume | 19 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 1 | en_US |
dc.citation.epage | 18 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000475504300001 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |