完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | La, Ching-Yi | en_US |
| dc.contributor.author | Chung, Kai-Min | en_US |
| dc.date.accessioned | 2019-10-05T00:08:45Z | - |
| dc.date.available | 2019-10-05T00:08:45Z | - |
| dc.date.issued | 2019-09-01 | en_US |
| dc.identifier.issn | 0925-1022 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1007/s10623-018-00597-3 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/152846 | - |
| dc.description.abstract | The famous Shannon impossibility result says that any encryption scheme with perfect secrecy requires a secret key at least as long as the message. In this paper we provide its quantum analogue with imperfect secrecy and imperfect correctness. We also give a systematic study of information-theoretically secure quantum encryption with two secrecy definitions. We show that the weaker one implies the stronger but with a security loss in d, where d is the dimension of the encrypted quantum system. This is good enough if the target secrecy error is of o(d(-1)). | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | Shannon impossibility | en_US |
| dc.subject | Information-theoretic security | en_US |
| dc.subject | Key length | en_US |
| dc.subject | Quantum one-time pad | en_US |
| dc.title | Quantum encryption and generalized Shannon impossibility | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1007/s10623-018-00597-3 | en_US |
| dc.identifier.journal | DESIGNS CODES AND CRYPTOGRAPHY | en_US |
| dc.citation.volume | 87 | en_US |
| dc.citation.issue | 9 | en_US |
| dc.citation.spage | 1961 | en_US |
| dc.citation.epage | 1972 | en_US |
| dc.contributor.department | 電信工程研究所 | zh_TW |
| dc.contributor.department | Institute of Communications Engineering | en_US |
| dc.identifier.wosnumber | WOS:000483581300002 | en_US |
| dc.citation.woscount | 0 | en_US |
| 顯示於類別: | 期刊論文 | |

