Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Ming-Chihen_US
dc.contributor.authorOng, Kian Chuanen_US
dc.date.accessioned2019-10-05T00:08:46Z-
dc.date.available2019-10-05T00:08:46Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn1064-8275en_US
dc.identifier.urihttp://dx.doi.org/10.1137/18M1210277en_US
dc.identifier.urihttp://hdl.handle.net/11536/152860-
dc.description.abstractIn this paper, we develop unconditionally energy stable schemes to solve the inextensible interface problem with bending. The fundamental problem is formulated by the immersed boundary method where the nonstationary Stokes equations are considered, with the elastic tension and bending forces expressed in terms of Dirac delta function along the interface. The elastic tension is one of the solution variables which plays the role of Lagrange multiplier to enforce the inextensibility of the interface. Both the backward Euler and Crank-Nicolson methods are introduced and it can be proved that the total energy, i.e., kinetic energy and bending energy, is discretely bounded. The numerical results show that both schemes are unconditionally energy stable without any time-step restriction. The backward Euler scheme is also applied to study the dynamics of vesicles suspended in a shear flow.en_US
dc.language.isoen_USen_US
dc.subjectimmersed boundary methoden_US
dc.subjectunconditionally energy stable schemeen_US
dc.subjectinextensible interfaceen_US
dc.subjectbendingen_US
dc.titleUNCONDITIONALLY ENERGY STABLE SCHEMES FOR THE INEXTENSIBLE INTERFACE PROBLEM WITH BENDINGen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/18M1210277en_US
dc.identifier.journalSIAM JOURNAL ON SCIENTIFIC COMPUTINGen_US
dc.citation.volume41en_US
dc.citation.issue4en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000483924100027en_US
dc.citation.woscount0en_US
Appears in Collections:Articles