完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSpector, Danielen_US
dc.contributor.authorVan Schaftingen, Jeanen_US
dc.date.accessioned2019-10-05T00:08:47Z-
dc.date.available2019-10-05T00:08:47Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn1120-6330en_US
dc.identifier.urihttp://dx.doi.org/10.4171/RLM/854en_US
dc.identifier.urihttp://hdl.handle.net/11536/152862-
dc.description.abstractWe prove a family of Sobolev inequalities of the form parallel to u parallel to(n/Ln-1, 1(Rn, V)) <= C parallel to A(D)u parallel to(L1(Rn,E)) where A(D) : C-c(infinity)(R-n ,V) -> C-c(infinity)(R-n , E) is a vector first-order homogeneous linear differential operator with constant coefficients, a is a vector field on R-n and L-n/n-1,L- 1 (R-n) is a Lorentz space. These new inequalities imply in particular the extension of the classical Gagliardo-Nirenberg inequality to Lorentz spaces originally due to Alvino and a sharpening of an inequality in terms of the deformation operator by Strauss (Korn Sobolev inequality) on the Lorentz scale. The proof relies on a nonorthogonal application of the Loomis-Whitney inequality and Gagliardo's lemma.en_US
dc.language.isoen_USen_US
dc.subjectKorn-Sobolev inequalityen_US
dc.subjectLorentz spacesen_US
dc.subjectLoomis-Whitney inequalityen_US
dc.titleOptimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo's lemmaen_US
dc.typeArticleen_US
dc.identifier.doi10.4171/RLM/854en_US
dc.identifier.journalRENDICONTI LINCEI-MATEMATICA E APPLICAZIONIen_US
dc.citation.volume30en_US
dc.citation.issue3en_US
dc.citation.spage413en_US
dc.citation.epage436en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000484065400001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文