完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Spector, Daniel | en_US |
dc.contributor.author | Van Schaftingen, Jean | en_US |
dc.date.accessioned | 2019-10-05T00:08:47Z | - |
dc.date.available | 2019-10-05T00:08:47Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 1120-6330 | en_US |
dc.identifier.uri | http://dx.doi.org/10.4171/RLM/854 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/152862 | - |
dc.description.abstract | We prove a family of Sobolev inequalities of the form parallel to u parallel to(n/Ln-1, 1(Rn, V)) <= C parallel to A(D)u parallel to(L1(Rn,E)) where A(D) : C-c(infinity)(R-n ,V) -> C-c(infinity)(R-n , E) is a vector first-order homogeneous linear differential operator with constant coefficients, a is a vector field on R-n and L-n/n-1,L- 1 (R-n) is a Lorentz space. These new inequalities imply in particular the extension of the classical Gagliardo-Nirenberg inequality to Lorentz spaces originally due to Alvino and a sharpening of an inequality in terms of the deformation operator by Strauss (Korn Sobolev inequality) on the Lorentz scale. The proof relies on a nonorthogonal application of the Loomis-Whitney inequality and Gagliardo's lemma. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Korn-Sobolev inequality | en_US |
dc.subject | Lorentz spaces | en_US |
dc.subject | Loomis-Whitney inequality | en_US |
dc.title | Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo's lemma | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.4171/RLM/854 | en_US |
dc.identifier.journal | RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI | en_US |
dc.citation.volume | 30 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 413 | en_US |
dc.citation.epage | 436 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000484065400001 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |