Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Shu-Juien_US
dc.contributor.authorChung, Ming-Hanen_US
dc.contributor.authorKao, Ming-Yien_US
dc.contributor.authorLee, Shang-Fanen_US
dc.contributor.authorYu, Yi-Hsingen_US
dc.contributor.authorKaun, Chao-Chengen_US
dc.contributor.authorNakamura, Tetsuyaen_US
dc.contributor.authorSasabe, Norimasaen_US
dc.contributor.authorChu, Shang-Juien_US
dc.contributor.authorTseng, Yuan-Chiehen_US
dc.date.accessioned2019-10-05T00:08:47Z-
dc.date.available2019-10-05T00:08:47Z-
dc.date.issued2019-08-28en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.9b11767en_US
dc.identifier.urihttp://hdl.handle.net/11536/152865-
dc.description.abstractMultiferroic materials are strong candidates for reducing the energy consumption of voltage-controlled spintronic devices because of the coexistence of ferroelectric (FE) and magnetic orders in a single phase. In this article, we present a new multiferroic perovskite, GdNixFe1-xO3 (GFNO), produced via sputtering on a SrTiO3 substrate. The proposed GFNO is FE and canted antiferromagnetic (AFM) within a monoclinic framework at room temperature. The FE polarization of the GFNO is up to 37 mu C/cm(2). When capped with a Co layer, the resulting heterostructure exhibits voltage-controlled magnetism (VCM). The heterostructured device exhibits two distinct features. First, its VCM depends on the magnitude as well as the polarity of the applied bias, thereby doubling the number of available magnetic readout states under a fixed voltage. Furthermore, the magnetic order of the device can be controlled very effectively within +/- 1 V. These two characteristics satisfy the requirements for low-power and high-storage technology. Theoretical analysis and experimental results indicate the importance of Ni dopant in regulating the polarity-dependent multiferroicity of this gadolinium ferrite system.en_US
dc.language.isoen_USen_US
dc.subjectmultiferroicsen_US
dc.subjectvoltage-controlled magnetismen_US
dc.subjectspintronicsen_US
dc.subjectperovskiteen_US
dc.subjectelectric field controlen_US
dc.titleGdFe0.8Ni0.2O3: A Multiferroic Material for Low-Power Spintronic Devices with High Storage Capacityen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.9b11767en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume11en_US
dc.citation.issue34en_US
dc.citation.spage31562en_US
dc.citation.epage31572en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000484073400115en_US
dc.citation.woscount0en_US
Appears in Collections:Articles