完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuang, Cheng-Hungen_US
dc.contributor.authorLin, Chih-Yangen_US
dc.contributor.authorTsai, Yuan-Yuen_US
dc.contributor.authorLian, Zhen-Youen_US
dc.contributor.authorXie, Hong-Xiaen_US
dc.contributor.authorHsu, Chih-Chaoen_US
dc.contributor.authorHuang, Chung-Linen_US
dc.date.accessioned2019-10-05T00:08:48Z-
dc.date.available2019-10-05T00:08:48Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2019.2934325en_US
dc.identifier.urihttp://hdl.handle.net/11536/152874-
dc.description.abstractPrecise vertebral segmentation provides the basis for spinal image analyses and interventions, such as vertebral compression fracture detection and other abnormalities. Deep learning is a popular and useful paradigm for medical image process. In this paper, we proposed an iterative vertebrae instance segmentation model, which has good generalization ability for segmenting all types of vertebrae, including cervical, thoracic, and lumbar vertebrae. In experimental results, our model not only used 17% less memory but also achieves better performance on vertebrae segmentation compared to existing methods. The existing method provides only two output for segmentation and classification respectively. However, with more memory available, our model is capable of providing third output for accurate anatomical prediction under the same amount of memory.en_US
dc.language.isoen_USen_US
dc.subjectDeep learningen_US
dc.subjectvertebra segmentationen_US
dc.subjecttriple outputen_US
dc.titleEfficient Triple Output Network for Vertebral Segmentation and Identificationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2019.2934325en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume7en_US
dc.citation.spage117978en_US
dc.citation.epage117985en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000484317000001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文