Full metadata record
DC FieldValueLanguage
dc.contributor.authorParashar, Paragen_US
dc.contributor.authorChen, Chun Hanen_US
dc.contributor.authorAkbar, Chandnien_US
dc.contributor.authorFu, Sze Mingen_US
dc.contributor.authorRawat, Tejender S.en_US
dc.contributor.authorPratik, Sparshen_US
dc.contributor.authorButola, Rajaten_US
dc.contributor.authorChen, Shih Hanen_US
dc.contributor.authorLin, Albert S.en_US
dc.date.accessioned2019-10-05T00:08:48Z-
dc.date.available2019-10-05T00:08:48Z-
dc.date.issued2019-08-13en_US
dc.identifier.issn1932-6203en_US
dc.identifier.urihttp://dx.doi.org/10.1371/journal.pone.0220607en_US
dc.identifier.urihttp://hdl.handle.net/11536/152885-
dc.description.abstractWhile there have been many studies using machine learning (ML) algorithms to predict process outcomes and device performance in semiconductor manufacturing, the extensively developed technology computer-aided design (TCAD) physical models should play a more significant role in conjunction with ML. While TCAD models have been effective in predicting the trends of experiments, a machine learning statistical model is more capable of predicting the anomalous effects that can be dependent on the chambers, machines, fabrication environment, and specific layouts. In this paper, we use an analytics-statistics mixed training (ASMT) approach using TCAD. Under this method, the TCAD models are incorporated into the machine learning training procedure. The mixed dataset with the experimental and TCAD results improved the prediction in terms of accuracy. With the application of ASMT to the BOSCH process, we show that the mean square error (MSE) can be effectively decreased when the analytics-statistics mixed training (ASMT) scheme is used instead of the classic neural network (NN) used in the baseline study. In this method, statistical induction and analytical deduction can be combined to increase the prediction accuracy of future intelligent semiconductor manufacturing.en_US
dc.language.isoen_USen_US
dc.titleAnalytics-statistics mixed training and its fitness to semisupervised manufacturingen_US
dc.typeArticleen_US
dc.identifier.doi10.1371/journal.pone.0220607en_US
dc.identifier.journalPLOS ONEen_US
dc.citation.volume14en_US
dc.citation.issue8en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電機學院zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentCollege of Electrical and Computer Engineeringen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000485009500015en_US
dc.citation.woscount0en_US
Appears in Collections:Articles