完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Van, Lan-Da | en_US |
dc.contributor.author | Lu, Tsung-Che | en_US |
dc.contributor.author | Jung, Tzyy-Ping | en_US |
dc.contributor.author | Wang, Jo-Fu | en_US |
dc.date.accessioned | 2019-10-05T00:09:44Z | - |
dc.date.available | 2019-10-05T00:09:44Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.isbn | 978-1-4799-8131-1 | en_US |
dc.identifier.issn | 1520-6149 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/152924 | - |
dc.description.abstract | This paper presents a hardware-oriented memory-limited online FastICA algorithm and its hardware architecture and implementation for eight-channel electroencephalogram ( EEG) signal separation. The online algorithm integrates the data overlapping, garbage detection, channel permutation, and momentum-controlled weight update schemes to stabilize the order of the decomposed source signals across time. This study also realizes the algorithm into a hardware architecture and implementation with a core area of 1.469x1.469 mm(2) in a TSMC 90 nm process. The resulting power dissipation for eight-channel EEG signal separation is 65 mW@100 MHz at 1V. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Blind signal separation | en_US |
dc.subject | EEG | en_US |
dc.subject | component/channel switch | en_US |
dc.subject | fast independent component analysis (FastICA) | en_US |
dc.subject | hardware implementation | en_US |
dc.title | HARDWARE-ORIENTED MEMORY-LIMITED ONLINE FASTICA ALGORITHM AND HARDWARE ARCHITECTURE FOR SIGNAL SEPARATION | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | en_US |
dc.citation.spage | 1438 | en_US |
dc.citation.epage | 1442 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000482554001134 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |