完整後設資料紀錄
DC 欄位語言
dc.contributor.authorVan, Lan-Daen_US
dc.contributor.authorLu, Tsung-Cheen_US
dc.contributor.authorJung, Tzyy-Pingen_US
dc.contributor.authorWang, Jo-Fuen_US
dc.date.accessioned2019-10-05T00:09:44Z-
dc.date.available2019-10-05T00:09:44Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-4799-8131-1en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/152924-
dc.description.abstractThis paper presents a hardware-oriented memory-limited online FastICA algorithm and its hardware architecture and implementation for eight-channel electroencephalogram ( EEG) signal separation. The online algorithm integrates the data overlapping, garbage detection, channel permutation, and momentum-controlled weight update schemes to stabilize the order of the decomposed source signals across time. This study also realizes the algorithm into a hardware architecture and implementation with a core area of 1.469x1.469 mm(2) in a TSMC 90 nm process. The resulting power dissipation for eight-channel EEG signal separation is 65 mW@100 MHz at 1V.en_US
dc.language.isoen_USen_US
dc.subjectBlind signal separationen_US
dc.subjectEEGen_US
dc.subjectcomponent/channel switchen_US
dc.subjectfast independent component analysis (FastICA)en_US
dc.subjecthardware implementationen_US
dc.titleHARDWARE-ORIENTED MEMORY-LIMITED ONLINE FASTICA ALGORITHM AND HARDWARE ARCHITECTURE FOR SIGNAL SEPARATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)en_US
dc.citation.spage1438en_US
dc.citation.epage1442en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000482554001134en_US
dc.citation.woscount0en_US
顯示於類別:會議論文