完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Weiweien_US
dc.contributor.authorMak, Man-Waien_US
dc.contributor.authorTu, Youzhien_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2019-10-05T00:09:44Z-
dc.date.available2019-10-05T00:09:44Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-4799-8131-1en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/152933-
dc.description.abstractHow to overcome the training and test data mismatch in speaker verification systems has been a focus of research recently. In this paper, we propose a semi-supervised nuisance attribute network ( SNAN) to reduce the domain mismatch in i-vectors and x-vectors. SNANs are based on the idea of nuisance attribute removal in inter-dataset variability compensation ( IDVC). But instead of measuring the domain variability through the dataset means, SNANs use the maximum mean discrepancy ( MMD) as part of their loss function, which enables the network to find nuisance directions in which domain variability is measured up to infinite moment. The architecture of SNANs also allows us to incorporate the out-of-domain speaker labels into the semi-supervised training process through the center loss and triplet loss. Using SNANs as a preprocessing step for PLDA training, we achieve a relative improvement of 11.8% in EER on NIST 2016 SRE compared to PLDA without adaptation. We also found that the semi-supervised approach can further improve SNANs' performance.en_US
dc.language.isoen_USen_US
dc.subjectSpeaker verificationen_US
dc.subjectx-vectorsen_US
dc.subjecti-vectorsen_US
dc.subjectdomain adaptationen_US
dc.subjectmaximum mean discrepancyen_US
dc.titleSEMI-SUPERVISED NUISANCE-ATTRIBUTE NETWORKS FOR DOMAIN ADAPTATIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)en_US
dc.citation.spage6236en_US
dc.citation.epage6240en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000482554006093en_US
dc.citation.woscount0en_US
顯示於類別:會議論文