完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShen, Yih-Liangen_US
dc.contributor.authorHuang, Chao-Yuanen_US
dc.contributor.authorWang, Syu-Siangen_US
dc.contributor.authorTsao, Yuen_US
dc.contributor.authorWang, Hsin-Minen_US
dc.contributor.authorChi, Tai-Shihen_US
dc.date.accessioned2019-10-05T00:09:44Z-
dc.date.available2019-10-05T00:09:44Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-4799-8131-1en_US
dc.identifier.issn1520-6149en_US
dc.identifier.urihttp://hdl.handle.net/11536/152934-
dc.description.abstractConventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic speech recognition (ASR) system. If the target is to minimize the recognition error, the recognition results should be used to design the objective function for optimizing the SE model. However, the structure of an ASR system, which consists of multiple units, such as acoustic and language models, is usually complex and not differentiable. In this study, we propose to adopt the reinforcement learning (RL) algorithm to optimize the SE model based on the recognition results. We evaluated the proposed RL-based SE system on the Mandarin Chinese broadcast news corpus (MATBN). Experimental results demonstrate that the proposed SE system can effectively improve the ASR results with a notable 12 : 40% and 19 : 23% error rate reductions for signal to noise ratio (SNR) at 0 dB and 5 dB conditions, respectively.en_US
dc.language.isoen_USen_US
dc.subjectreinforcement learningen_US
dc.subjectautomatic speech recognitionen_US
dc.subjectspeech enhancementen_US
dc.subjectdeep neural networken_US
dc.subjectcharacter error rateen_US
dc.titleREINFORCEMENT LEARNING BASED SPEECH ENHANCEMENT FOR ROBUST SPEECH RECOGNITIONen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)en_US
dc.citation.spage6750en_US
dc.citation.epage6754en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000482554006196en_US
dc.citation.woscount0en_US
顯示於類別:會議論文