Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Shang-Ho (Lawrence)en_US
dc.contributor.authorTsai, Min-Shanen_US
dc.contributor.authorHuang, Hsin-Chien_US
dc.contributor.authorLing, Dean-Chang (Ash)en_US
dc.date.accessioned2019-10-05T00:09:46Z-
dc.date.available2019-10-05T00:09:46Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-0397-6en_US
dc.identifier.issn0271-4302en_US
dc.identifier.urihttp://hdl.handle.net/11536/152953-
dc.description.abstractThis work proposes a system to predict the outcomes of the defibrillation during the period of ventricular fibrillation. Accurate outcomes can avoid inefficient defibrillation that causes severe myocardial injury. In this system, we apply a neural network model and use the frequency components of ECG signals as training data to determine the neuron coefficients. The trained system is then validated (tested) using different set of data to justify the performance. Experimental results are provided to show superior performance of the proposed system.en_US
dc.language.isoen_USen_US
dc.subjectneural network (NN)en_US
dc.subjectconvolution neural network (CNN)en_US
dc.subjectlearningen_US
dc.subjectamplitude spectrum area (AMSA)en_US
dc.subjectventricular fibrillation (VF)en_US
dc.subjectdefibrillation timingen_US
dc.subjectfrequency variation (FV)en_US
dc.titlePREDICTING DEFIBRILLATION OUTCOME IN VENTRICULAR FIBRILLATION USING ECG WITH NEURAL NETWORK ALGORITHMen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000483076400190en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper