Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuang, Yu-Hsiangen_US
dc.contributor.authorLin, Chang-Tzuen_US
dc.contributor.authorChen, Hung-Mingen_US
dc.contributor.authorLee, Chi-Hanen_US
dc.contributor.authorChen, Ting-Shengen_US
dc.date.accessioned2019-10-05T00:09:47Z-
dc.date.available2019-10-05T00:09:47Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-0397-6en_US
dc.identifier.issn0271-4302en_US
dc.identifier.urihttp://hdl.handle.net/11536/152966-
dc.description.abstractRecently a prior work has been proposed to improve the power distribution network (PDN) design with some practical methodologies. However, we found that such approach will cause redundant resources, resulting in the waste of the metal application. In this paper, we present a more effective design flow to automatically generate a PDN verified by the commercial tool without IR-Drop violation. We propose an analytical model and consider the different types of macros to determine the total metal width of PDN. Moreover, the optimization is based on a centroid learning method from unsupervised learning to consolidate PDN. Our work has experimented on real designs in 65 nm process, 0.18 um generic process, and 40 nm process. The results show that our framework can satisfy the given IR-Drop constraints and simultaneously save lots of metal resource (means no overdesign).en_US
dc.language.isoen_USen_US
dc.titleMore Effective Power Network Prototyping by Analytical and Centroid Learningen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000483076402168en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper