Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, You-Chiaen_US
dc.contributor.authorMiller, Steven A.en_US
dc.contributor.authorPhare, Christopher T.en_US
dc.contributor.authorShin, Min Chulen_US
dc.contributor.authorZadka, Mosheen_US
dc.contributor.authorRoberts, Samantha P.en_US
dc.contributor.authorStern, Brianen_US
dc.contributor.authorJi, Xingchenen_US
dc.contributor.authorMohanty, Aseemaen_US
dc.contributor.authorGordillo, Oscar A. Jimenezen_US
dc.contributor.authorLipson, Michalen_US
dc.date.accessioned2019-10-05T00:09:47Z-
dc.date.available2019-10-05T00:09:47Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5106-2630-0en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://dx.doi.org/10.1117/12.2519803en_US
dc.identifier.urihttp://hdl.handle.net/11536/152969-
dc.description.abstractSolid-state beam steering is the key to realize miniature, mass-producible LIDAR (Light Detection And Ranging) and free-space communication systems without using any moving parts. The huge power consumption required in solid-state beam steering, however, prevents this technology from further scaling. Here we show two different approaches to enable low-power solid-state beam steering. In the first approach, we use spatial-mode multiplexing to reduce the power consumption of the phase shifters in a large-scale optical phased array. We show an improvement of phase shifter power consumption by nearly 9 times, without sacrificing optical bandwidth or operation speed. Using this approach, we demonstrate 2D beam steering with a silicon photonic phased array containing 512 actively controlled elements. This phased array consumes only 1.9 W of power while steering over a 70 degrees x 6 degrees field of view. This power consumption is at least an order of magnitude lower compared to other demonstrated large-scale active phased arrays. In the second approach, we achieve 2D beam steering with a switchable emitter array and a metalens that collimates the emitted light. The power consumption of this approach scales logarithmically with the number of emitters and therefore favors large-scale systems. This approach allows straightforward feedback control and better robustness to environmental temperature change. Our approaches demonstrate a path forward to build truly scalable beam steering devices.en_US
dc.language.isoen_USen_US
dc.subjectsilicon photonicsen_US
dc.subjectoptical phased arrayen_US
dc.subjectbeam steeringen_US
dc.subjectmetalensen_US
dc.subjectmetasurfaceen_US
dc.subjectLIDARen_US
dc.titleScalable low-power silicon photonic platform for all-solid-state beam steeringen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.2519803en_US
dc.identifier.journalMICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS XIen_US
dc.citation.volume10982en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.department光電工程研究所zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.contributor.departmentInstitute of EO Enginerringen_US
dc.identifier.wosnumberWOS:000484733200022en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper