Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, Chih-Chcng | en_US |
dc.contributor.author | Wu, Ming-Hung | en_US |
dc.contributor.author | Lin, Jia-Wei | en_US |
dc.contributor.author | Li, Chun-Hsien | en_US |
dc.contributor.author | Parmar, Vivek | en_US |
dc.contributor.author | Lee, Heng-Yuan | en_US |
dc.contributor.author | Wei, Jeng-Hua | en_US |
dc.contributor.author | Sheu, Shyh-Shyuan | en_US |
dc.contributor.author | Suri, Manan | en_US |
dc.contributor.author | Chang, Tian-Sheuan | en_US |
dc.contributor.author | Hou, Tuo-Hung | en_US |
dc.date.accessioned | 2019-10-05T00:09:48Z | - |
dc.date.available | 2019-10-05T00:09:48Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.isbn | 978-1-4503-6725-7 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1145/3316781.3317872 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/152982 | - |
dc.description.abstract | Binary STT-MRAM is a highly anticipated embedded non-volatile memory technology in advanced logic nodes <28 nm. How to enable its in-memory computing (IMC) capability is critical for enhancing AI Edge. Based on the soon-available STT-MRAM, we report the first binary deep convolutional neural network (NV-BNN) capable of both local and remote learning. Exploiting intrinsic cumulative switching probability, accurate online training of CIFAR-10 color images (similar to 90%) is realized using a relaxed endurance spec (switching <= 20 times) and hybrid digital/IMC design. For offline training, the accuracy loss due to imprecise weight placement can be mitigated using a rapid non-iterative training-with-noise and fine-tuning scheme. | en_US |
dc.language.iso | en_US | en_US |
dc.title | NV-BNN: An Accurate Deep Convolutional Neural Network Based on Binary STT-MRAM for Adaptive AI Edge | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1145/3316781.3317872 | en_US |
dc.identifier.journal | PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC) | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
dc.identifier.wosnumber | WOS:000482058200030 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Conferences Paper |