完整後設資料紀錄
DC 欄位語言
dc.contributor.authorDutta, Dipaken_US
dc.contributor.authorJiang, Jian-Yongen_US
dc.contributor.authorJamaluddin, Anifen_US
dc.contributor.authorHe, Shih-Mingen_US
dc.contributor.authorHung, Yu-Hanen_US
dc.contributor.authorChen, Fumingen_US
dc.contributor.authorChang, Jeng-Kueien_US
dc.contributor.authorSu, Ching-Yuanen_US
dc.date.accessioned2019-12-13T01:09:55Z-
dc.date.available2019-12-13T01:09:55Z-
dc.date.issued2019-10-09en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.9b09927en_US
dc.identifier.urihttp://hdl.handle.net/11536/153021-
dc.description.abstractNanoporous holey-graphene (HG) shows potential versatility in several technological fields, especially in biomedical, water filtration, and energy storage applications. Particularly, for ultrahigh electrochemical energy storage applications, HG has shown promise in addressing the issue of low gravimetric and volumetric energy densities by boosting of the ion-transport efficiency in a high-mass-loaded graphene electrode. However, there are no studies showing complete control over the entire pore architecture and density of HG and their effect on high-rate energy storage. Here, we report a unique and cost-effective method for obtaining well-controlled HG, where a copper nanocatalyst assists the predefined porosity tailoring of the HG and leads to an extraordinary high pore density that exceeds 1 x 10(3) mu m(-2). The pore architectures of the hierarchical and homogenous pores of HG were realized through a rationally designed nanocatalyst and the annealing procedure in this method. The HG electrode with a high mass loading results in improved supercapacitor performance that is at least 1 order of magnitude higher than conventional graphene flakes (reduced electrochemically exfoliated graphene (rECG)) in areal capacitance (similar to 100% retention of capacitance until 15 000 cycles), energy density, and power density. The diffusion coefficient of the HG electrode is 1.5-fold higher than that of rECG at a mass loading of 15 mg cm(-2), indicating excellent ion-transport efficiency. The excellent ion-transport efficiency of HG is further proved by nearly 4-fold magnitude lowering of its R-ion (the ionic resistance in the electrolyte-filled pores) value as compared with rECG when estimated for equivalent high-mass loaded electrodes. Furthermore, the HG exhibits a packing density that is 2 orders of magnitude higher than rECG, revealing the utility of the maximum electrode mass and possessing higher volumetric capacitance. The perfect tailoring of HG with optimized porosity allows the achievement of high areal capacitance and excellent cycling stability due to the facile ion-and charge-transport at high-mass-loaded electrodes, which could open a new avenue for addressing the long-existing issue of practical application of graphene-based energy storage devices.en_US
dc.language.isoen_USen_US
dc.subjectholey-grapheneen_US
dc.subjectnanocatalysten_US
dc.subjectnanoporesen_US
dc.subjectsupercapacitoren_US
dc.subjectenergy storageen_US
dc.subjectmolecular-level sievingen_US
dc.titleNanocatalyst-Assisted Fine Tailoring of Pore Structure in Holey-Graphene for Enhanced Performance in Energy Storageen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.9b09927en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume11en_US
dc.citation.issue40en_US
dc.citation.spage36560en_US
dc.citation.epage36570en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000490357900029en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文