Full metadata record
DC FieldValueLanguage
dc.contributor.authorSun, Edward W.en_US
dc.contributor.authorKruse, Timmen_US
dc.contributor.authorChen, Yi-Tingen_US
dc.date.accessioned2019-12-13T01:09:57Z-
dc.date.available2019-12-13T01:09:57Z-
dc.date.issued2019-10-01en_US
dc.identifier.issn0254-5330en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10479-019-03150-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/153037-
dc.description.abstractRegulatory reform enacted (e.g., the Dodd-Frank Act enforced in the U.S.) requires the financial service industry to consider the "reasonably expected near term demand" (i.e., RENTD) in trading. To manage the price impact and transaction cost associated with orders submitted to an order driven market, market makers or specialists must determine their trading styles (aggressive, neutral, or passive) based on the market liquidity in response to RENTD, particularly for trading a large quantity of some financial instrument. In this article we introduce a model considering different trading styles to satisfy the predictive near-term customer demand of market liquidity in order to find an optimal order submission strategy based on different market situations. We show some analytical properties and numerical performances of our model in search of optimal solutions. We evaluate the performances of our model with simulations run over a set of experiments in comparison with two alternative strategies. Our results suggest that the proposed model illustrates superiority in performance.en_US
dc.language.isoen_USen_US
dc.subjectArtificial intelligenceen_US
dc.subjectAlgorithmic tradingen_US
dc.subjectDecision analyticsen_US
dc.subjectDiscrete optimizationen_US
dc.subjectFinTechen_US
dc.subjectLiquidityen_US
dc.titleStylized algorithmic trading: satisfying the predictive near-term demand of liquidityen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10479-019-03150-0en_US
dc.identifier.journalANNALS OF OPERATIONS RESEARCHen_US
dc.citation.volume281en_US
dc.citation.issue1-2en_US
dc.citation.spage315en_US
dc.citation.epage347en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000491048300015en_US
dc.citation.woscount0en_US
Appears in Collections:Articles