完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, Yueh-Chengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorShieh, Shih-Fengen_US
dc.date.accessioned2019-12-13T01:09:57Z-
dc.date.available2019-12-13T01:09:57Z-
dc.date.issued2019-11-01en_US
dc.identifier.issn0029-599Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00211-019-01065-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/153040-
dc.description.abstractThis article focuses on computing Hamiltonian matrix exponential. Given a Hamiltonian matrix H, it is well-known that the matrix exponential e(H) is a symplectic matrix and its eigenvalues form reciprocal (lambda, 1/(lambda) over bar). It is important to take care of the symplectic structure for computing e(H). Based on the structure-preserving flow proposed by Kuo et al. (SIAM J Matrix Anal Appl 37:976-1001, 2016), we develop a numerical method for computing the symplectic matrix pair (M, L) which represents e(H).en_US
dc.language.isoen_USen_US
dc.titleA structure preserving flow for computing Hamiltonian matrix exponentialen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00211-019-01065-3en_US
dc.identifier.journalNUMERISCHE MATHEMATIKen_US
dc.citation.volume143en_US
dc.citation.issue3en_US
dc.citation.spage555en_US
dc.citation.epage582en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000491060000002en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文