完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Kuo, Yueh-Cheng | en_US |
dc.contributor.author | Lin, Wen-Wei | en_US |
dc.contributor.author | Shieh, Shih-Feng | en_US |
dc.date.accessioned | 2019-12-13T01:09:57Z | - |
dc.date.available | 2019-12-13T01:09:57Z | - |
dc.date.issued | 2019-11-01 | en_US |
dc.identifier.issn | 0029-599X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00211-019-01065-3 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/153040 | - |
dc.description.abstract | This article focuses on computing Hamiltonian matrix exponential. Given a Hamiltonian matrix H, it is well-known that the matrix exponential e(H) is a symplectic matrix and its eigenvalues form reciprocal (lambda, 1/(lambda) over bar). It is important to take care of the symplectic structure for computing e(H). Based on the structure-preserving flow proposed by Kuo et al. (SIAM J Matrix Anal Appl 37:976-1001, 2016), we develop a numerical method for computing the symplectic matrix pair (M, L) which represents e(H). | en_US |
dc.language.iso | en_US | en_US |
dc.title | A structure preserving flow for computing Hamiltonian matrix exponential | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00211-019-01065-3 | en_US |
dc.identifier.journal | NUMERISCHE MATHEMATIK | en_US |
dc.citation.volume | 143 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 555 | en_US |
dc.citation.epage | 582 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000491060000002 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |