Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Shu-Juien_US
dc.contributor.authorChen, Syuan-Yeen_US
dc.contributor.authorChen, Po-Wenen_US
dc.contributor.authorHuang, Szu-Jungen_US
dc.contributor.authorTseng, Yuan-Chiehen_US
dc.date.accessioned2019-12-13T01:09:57Z-
dc.date.available2019-12-13T01:09:57Z-
dc.date.issued2019-09-18en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.9b08766en_US
dc.identifier.urihttp://hdl.handle.net/11536/153042-
dc.description.abstractThis paper presents a unique GdFe08Ni0.2O3 perovskite thin film for use in pulse-controlled nonvolatile memory devices (combined with a SrTiO3 (STO) substrate) without the need for an electrical-stressing read-out process. The use of pulse voltage imposes permanent downward/upward polarization states on GFNO, which enables greater energy density and higher energy efficiency than the unpoled state for memory. The two polarization states produce carrier migrations in opposing directions across the GFNO/STO interface, which alter the depletion region of the device, as reflected in photovoltaic short-circuit current density (J(sc)) values. Modulating the duration (varying the number of sequential pulses but fixing the pulse width and delay time) and direction of continuous pulse voltage is an effective method for controlling J(sc), thereby allowing the fabrication of nondestructive, light-tunable, nonvolatile memory devices. In experiments, J(sc) in the downward polarized state was approximately 6 times greater than that in the upward polarized state. It is promising that more memory states can be enabled by the proposed heterostructure by selecting appropriate pulse trains. Real-time interfacial changes (relative to the nonvolatile characteristics of the device) were obtained by applying synchrotron X-ray techniques simultaneously with pulse characterization. This made it possible to separately probe the electronic and chemical states of the GFNO (a p-type-like semiconductor) and STO (an n-type-like semiconductor) while varying the pulse direction, thereby making it possible to identify the mechanisms underlying the observed phenomena.en_US
dc.language.isoen_USen_US
dc.subjectpulseen_US
dc.subjectnonvolatile memoryen_US
dc.subjectphotovoltaicen_US
dc.subjectperovskiteen_US
dc.subjectsynchrotronen_US
dc.titlePulse-Driven Nonvolatile Perovskite Memory with Photovoltaic Read-Out Characteristicsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.9b08766en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume11en_US
dc.citation.issue37en_US
dc.citation.spage33803en_US
dc.citation.epage33810en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000487179900028en_US
dc.citation.woscount0en_US
Appears in Collections:Articles