Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Chung-Fuen_US
dc.contributor.authorLi, Xiangen_US
dc.contributor.authorLiu, Keweien_US
dc.contributor.authorZou, Fengen_US
dc.contributor.authorTung, Wei-Yaoen_US
dc.contributor.authorHuang, Yi-Fanen_US
dc.contributor.authorXia, Xuhuien_US
dc.contributor.authorWang, Chien-Lungen_US
dc.contributor.authorVogt, Bryan D.en_US
dc.contributor.authorZhu, Yuen_US
dc.date.accessioned2019-12-13T01:10:01Z-
dc.date.available2019-12-13T01:10:01Z-
dc.date.issued2019-11-01en_US
dc.identifier.issn2405-8297en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ensm.2019.07.034en_US
dc.identifier.urihttp://hdl.handle.net/11536/153088-
dc.description.abstractLithium ion capacitors (LICs) are energy storage devices integrating the complementary features of both supercapacitors and lithium ion batteries to simultaneously reach high energy and power densities. One of the major challenges in LIC technology is the kinetic imbalance between the faradaic insertion anode and capacitive cathode. Therefore, the design of electrode materials is crucial to enhance the rate performance of anode and the capacitance of the cathode in LIC devices. In this work, novel LICs were demonstrated with nanostructured cathode and anode. A vertically-aligned carbon nanoflakes (VACNFs) cathode provided high electrochemically active surface area and excellent conductivity, while a metal organic framework (MOF) derived carbonized nickel cobalt oxide (cNiCo(2)O(4)) anode ensured fast conversion reactions and remarkable cyclability. Electrochemical characterization of individual electrode confirmed that both electrodes exhibited good electron and ion transport capability. The LICs were fabricated with optimized electrode active materials loading to deliver high energy densities at desired charge/discharge rates. The devices exhibited energy density up to 136.9W h/kg (at 200 W/ kg). At higher power density of 40 kW/kg, under which a full charge-discharge can be finished within 4 s, the LICs could still deliver an energy density of 26.44W h/kg. The devices also showed a good cycle stability (approximate to 90% capacitance retention after 9000 cycles, under current density of 4 A/g) within the voltage range of 1-4.2 V.en_US
dc.language.isoen_USen_US
dc.subjectLithium ion capacitoren_US
dc.subjectVertically aligned carbon nanoflakesen_US
dc.subjectMetal-organic frameworksen_US
dc.subjectEnergy storageen_US
dc.titleA high-performance lithium-ion capacitor with carbonized NiCo2O4 anode and vertically-aligned carbon nanoflakes cathodeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ensm.2019.07.034en_US
dc.identifier.journalENERGY STORAGE MATERIALSen_US
dc.citation.volume22en_US
dc.citation.spage265en_US
dc.citation.epage274en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000488256300028en_US
dc.citation.woscount0en_US
Appears in Collections:Articles