完整後設資料紀錄
DC 欄位語言
dc.contributor.authorDeng, Xingen_US
dc.contributor.authorZhao, Yi-Fengen_US
dc.contributor.authorZhong, Nien_US
dc.contributor.authorYue, Fang-Yuen_US
dc.contributor.authorHuang, Rongen_US
dc.contributor.authorPeng, Huien_US
dc.contributor.authorTang, Xiao-Dongen_US
dc.contributor.authorXiang, Ping-Huaen_US
dc.contributor.authorChu, Ying-Haoen_US
dc.contributor.authorDuan, Chun-Gangen_US
dc.date.accessioned2019-12-13T01:12:23Z-
dc.date.available2019-12-13T01:12:23Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn2199-160Xen_US
dc.identifier.urihttp://dx.doi.org/10.1002/aelm.201900742en_US
dc.identifier.urihttp://hdl.handle.net/11536/153244-
dc.description.abstractTo meet the development of wearable and energy-efficient flexible electronics, multifunctional oxide film on soft substrate and its versatile phase control are in demand. Here, flexible VO2 film is directly deposited on mica via van der Waals epitaxy, exhibiting pronounced metal-insulator (MI) transition and infrared (IR) switching properties. Using a rubbery solid ionic gel as gate insulator, a fully flexible and transparent VO2-channel Mott transistor is successfully demonstrated. The prototype Mott transistor processes excellent mechanical flexibility and giant on/off current ratio of approximate to 10(5)% even at room temperature. Highly reversible suppression of MI transition is realized by applying small gate voltages and the nonvolatile phase modulation suggests an electrochemical reaction mechanism. X-ray diffraction and secondary-ion mass spectroscopy analyses, together with theoretical calculation, confirm that electrically controlled phase transformation is mainly caused by reversible and nonvolatile proton (H+) doping into VO2 lattices. Significant modulation of IR transmittance (>40%) is observed in the VO2 Mott transistor, which is attributed to electrically driven phase transition between insulating VO2 and metallic HxVO2 phases. The flexible and transparent Mott transistor provides a good platform for proton-mediated Mottronics and realizes novel electric control of optical characteristics, showing a promising application for flexible energy-saving smart windows.en_US
dc.language.isoen_USen_US
dc.subjectelectrolyte gatingen_US
dc.subjectflexible electronicsen_US
dc.subjectmetal-insulator transitionen_US
dc.subjectMott transistoren_US
dc.subjectvanadium dioxideen_US
dc.titleProton-Mediated Phase Control in Flexible and Transparent Mott Transistorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/aelm.201900742en_US
dc.identifier.journalADVANCED ELECTRONIC MATERIALSen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000495506400001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文