完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Yu-Chien_US
dc.contributor.authorChi, Tai-Shihen_US
dc.contributor.authorYang, Chia-Hsiangen_US
dc.date.accessioned2019-12-13T01:12:51Z-
dc.date.available2019-12-13T01:12:51Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-7884-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/153277-
dc.description.abstractThis paper proposes an acoustic DSP processor with a neural network core for speech enhancement. Accelerators for convolutional neural network (CNN) and fast Fourier transform (FFT) are embedded. The CNN-based speech enhancement algorithm takes the speech signals spectrogram as the model's input, and predicts the desired mask of speech to enhance speech intelligibility after passing through the CNN model. An array of multiply-accumulator (MAC) and coordinate rotation digital computer (CORDIC) engines are deployed to efficiently compute linear and nonlinear functions. Hardware sharing is applied to reduce hardware area by leveraging the high similarity between CNN and FFT computations. The proposed DSP processor chip is fabricated in a 40-nm CMOS technology with a core area of 4.3 mm(2). The chip's power dissipation is 2.17 mW at an operating frequency of 5 MHz. The CNN accelerator supports both convolutional and fully-connected layers and achieves an energy efficiency of 1200-to-2180 GOPS/W, despite the flexibility for FFT. The speech intelligibility can be enhanced by up to 41% under low SNR conditions.en_US
dc.language.isoen_USen_US
dc.subjectSpeech Enhancementen_US
dc.subjectconvolutional neural network (CNN)en_US
dc.subjectfast Fourier transform (FFT)en_US
dc.subjectreconfigurable architectureen_US
dc.subjectCMOS integrated circuitsen_US
dc.titleA 2.17mW Acoustic DSP Processor with CNN-FFT Accelerators for Intelligent Hearing Aided Devicesen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019)en_US
dc.citation.spage97en_US
dc.citation.epage101en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000493095400022en_US
dc.citation.woscount0en_US
顯示於類別:會議論文