完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Kai-Yenen_US
dc.contributor.authorHuang, Yu-Deen_US
dc.contributor.authorHo, Yun-Lungen_US
dc.contributor.authorFang, Wai-Chien_US
dc.date.accessioned2019-12-13T01:12:51Z-
dc.date.available2019-12-13T01:12:51Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-7884-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/153279-
dc.description.abstractThis paper proposes an improved softmax layer algorithm and hardware implementation, which is applicable to an effective convolutional neural network of EEG-based real-time human emotion recognition. Compared with the general softmax layer, this hardware design adds threshold layers to accelerate the training speed and replace the Euler's base value with a dynamic base value to improve the network accuracy. This work also shows a hardware-friendly way to implement batch normalization layer on chip. Using the EEG emotion DEAP[7] database, the maximum and mean classification accuracy were achieved as 96.03% and 83.88% respectively. In this work, the usage of improved softmax layer can save up to 15% of training model convergence time and also increase by 3 to 5% the average accuracy.en_US
dc.language.isoen_USen_US
dc.subjectImproved Softmax Layeren_US
dc.subjectThreshold Layeren_US
dc.subjectBatch Normalization Layeren_US
dc.subjectConvolutional Neural Networken_US
dc.subjectDeep Learningen_US
dc.subjectHardware Machine Learningen_US
dc.titleA Customized Convolutional Neural Network Design Using Improved Softmax Layer for Real-time Human Emotion Recognitionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019)en_US
dc.citation.spage102en_US
dc.citation.epage106en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000493095400023en_US
dc.citation.woscount0en_US
顯示於類別:會議論文