完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Duen-Renen_US
dc.contributor.authorChou, Yun-Chengen_US
dc.contributor.authorJian, Ciao-Tingen_US
dc.date.accessioned2019-12-13T01:12:52Z-
dc.date.available2019-12-13T01:12:52Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-1-5386-7447-5en_US
dc.identifier.urihttp://dx.doi.org/10.1109/IIAI-AAI.2018.00013en_US
dc.identifier.urihttp://hdl.handle.net/11536/153301-
dc.description.abstractOnline news websites provide diverse article topics, such as fashion news, entertainment and movie articles to attract more users and create more benefits. Analyzing users' browsing behaviors and preferences to provide online recommendations is an important trend for online news websites. In this research, we propose a novel online recommendation method for recommending movie articles to users when they are browsing the news. Specifically, association rule mining is conducted on user browsing news and movies to find the latent associations between news and movies. A novel online recommendation approach is proposed based on Latent Dirichlet Allocation, enhanced Collaborative Topic Modeling and the diversity of recommendations. We evaluate the proposed approach via an online evaluation on a real news website. The online evaluation results show that our proposed approach can enhance the click-through rate for recommending movie articles and alleviate the cold-start issue.en_US
dc.language.isoen_USen_US
dc.subjectRecommendationen_US
dc.subjectLatent Topic Modelen_US
dc.subjectCollaborative Topic Modelingen_US
dc.subjectDiversityen_US
dc.subjectOnline Recommendationen_US
dc.titleOnline Recommendation based on Collaborative Topic Modeling and Item Diversityen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/IIAI-AAI.2018.00013en_US
dc.identifier.journal2018 7TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2018)en_US
dc.citation.spage7en_US
dc.citation.epage12en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000494425300002en_US
dc.citation.woscount0en_US
顯示於類別:會議論文