Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsiao, Yu-Hsiangen_US
dc.contributor.authorSu, Chao-Tonen_US
dc.contributor.authorFu, Pin-Chengen_US
dc.contributor.authorChen, Mu-Chenen_US
dc.date.accessioned2019-12-13T01:12:52Z-
dc.date.available2019-12-13T01:12:52Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-1-5386-7447-5en_US
dc.identifier.urihttp://dx.doi.org/10.1109/IIAI-AAI.2018.00113en_US
dc.identifier.urihttp://hdl.handle.net/11536/153302-
dc.description.abstractClass imbalance is a common problem in classification problems. The Mahalanobis-Taguchi System (MTS) has been shown to be robust in addressing class imbalance problems owing to its inherent properties of classification model construction. The bagging learning approach often has been applied as a superior strategy to reduce the learning bias of classification algorithms. In this study, we propose MTSbag, which integrates the MTS and the bagging-based ensemble learning approaches to enhance the ability of conventional MTS in handling imbalanced data. We perform numerical experiments involving multiple datasets with various class imbalance levels to demonstrate the effectiveness of MTSbag, especially for datasets with high imbalance levels.en_US
dc.language.isoen_USen_US
dc.subjectMahalanobis-Taguchi System (MTS)en_US
dc.subjectClass imbalance problemen_US
dc.subjectEnsemble learningen_US
dc.subjectBaggingen_US
dc.subjectClassificationen_US
dc.titleMTSbag: A Method to Solve Class Imbalance Problemsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/IIAI-AAI.2018.00113en_US
dc.identifier.journal2018 7TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2018)en_US
dc.citation.spage524en_US
dc.citation.epage529en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000494425300102en_US
dc.citation.woscount1en_US
Appears in Collections:Conferences Paper