完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Yen-Weien_US
dc.contributor.authorPeng, Wen-Hsiaoen_US
dc.date.accessioned2020-01-02T00:03:28Z-
dc.date.available2020-01-02T00:03:28Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-9552-4en_US
dc.identifier.issn1945-7871en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICME.2019.00096en_US
dc.identifier.urihttp://hdl.handle.net/11536/153328-
dc.description.abstractThis paper tackles the problem of learning a questioner in the goal-oriented visual dialog task. Several previous works adopt model-free reinforcement learning. Most pretrain the model from a finite set of human-generated data. We argue that using limited demonstrations to kick-start the questioner is insufficient due to the large policy search space. Inspired by a recently proposed information theoretic approach, we develop two analytic experts to serve as a source of high-quality demonstrations for imitation learning. We then take advantage of reinforcement learning to refine the model towards the goal-oriented objective. Experimental results on the GuessWhat?! dataset show that our method has the combined merits of imitation and reinforcement learning, achieving the state-of-the-art performance.en_US
dc.language.isoen_USen_US
dc.titleLEARNING GOAL-ORIENTED VISUAL DIALOG AGENTS: IMITATING AND SURPASSING ANALYTIC EXPERTSen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICME.2019.00096en_US
dc.identifier.journal2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME)en_US
dc.citation.spage520en_US
dc.citation.epage525en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000501820600088en_US
dc.citation.woscount0en_US
顯示於類別:會議論文