完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Wang, Tsun-Hsuan | en_US |
dc.contributor.author | Wang, Fu-En | en_US |
dc.contributor.author | Lin, Juan-Ting | en_US |
dc.contributor.author | Tsai, Yi-Hsuan | en_US |
dc.contributor.author | Chiu, Wei-Chen | en_US |
dc.contributor.author | Sun, Min | en_US |
dc.date.accessioned | 2020-01-02T00:03:29Z | - |
dc.date.available | 2020-01-02T00:03:29Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.isbn | 978-1-5386-6026-3 | en_US |
dc.identifier.issn | 1050-4729 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/153338 | - |
dc.description.abstract | We propose a novel plug-and-play (PnP) module for improving depth prediction with taking arbitrary patterns of sparse depths as input. Given any pre-trained depth prediction model, our PnP module updates the intermediate feature map such that the model outputs new depths consistent with the given sparse depths. Our method requires no additional training and can be applied to practical applications such as leveraging both RGB and sparse LiDAR points to robustly estimate dense depth map. Our approach achieves consistent improvements on various state-of-the-art methods on indoor (i.e., NYU-v2) and outdoor (i.e., KITTI) datasets. Various types of LiDARs are also synthesized in our experiments to verify the general applicability of our PnP module in practice. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Plug-and-Play: Improve Depth Prediction via Sparse Data Propagation | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | en_US |
dc.citation.spage | 5880 | en_US |
dc.citation.epage | 5886 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.identifier.wosnumber | WOS:000494942304042 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |