Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Ching-Yingen_US
dc.contributor.authorWu, Pin-Hsuanen_US
dc.contributor.authorWu, Kun-Longen_US
dc.contributor.authorHu, Roberten_US
dc.contributor.authorChang, Chi-Yangen_US
dc.date.accessioned2020-01-02T00:04:17Z-
dc.date.available2020-01-02T00:04:17Z-
dc.date.issued2019-11-01en_US
dc.identifier.issn1751-858Xen_US
dc.identifier.urihttp://dx.doi.org/10.1049/iet-cds.2019.0074en_US
dc.identifier.urihttp://hdl.handle.net/11536/153350-
dc.description.abstractIn this study, the authors will investigate the insertion loss (IL) of the broadband 8-way power combiner used in their millimetre-wave power amplifier (PA) design. By treating this combiner as impedance transformer under resistor-capacitor (RC)-loading condition, both the characteristic impedance and electrical length of the constituting metal lines can be obtained, where the much shorter line length suggests wider bandwidth and lower IL. However, proper loss analysis must take into account the multi-reflection of voltage wave along these mismatched transmission lines, i.e. the use of the power attenuation expression ${\rm e}<^>{ - 2\alpha L}$e-2 alpha L is just not accurate enough. With their derived equations, it shows that the IL of their proposed 8-way combiner can be as low as 0.92 dB at 94 GHz, which is much smaller than the 1.5 dB for the conventional quarter-wavelength combiner. Mathematics for the IL of the drain-bias shunt stub and the output DC-blocking capacitor has also been derived. As a demonstration, a 77-110 GHz 40 nm-complementary metal-oxide-semiconductor PA made of cascode transistors is then designed that has more than 18 dB gain, and its OP1 dB is around 13 dBm across the whole frequency range.en_US
dc.language.isoen_USen_US
dc.subjectCMOS integrated circuitsen_US
dc.subjectfield effect MIMICen_US
dc.subjectimpedance convertorsen_US
dc.subjectpower combinersen_US
dc.subjectmillimetre wave power amplifiersen_US
dc.subjectinsertion lossen_US
dc.subjectbroadband 8-way power combineren_US
dc.subjectimpedance transformeren_US
dc.subjectRC-loading conditionen_US
dc.subjectcharacteristic impedanceen_US
dc.subjectelectrical lengthen_US
dc.subjectshorter line lengthen_US
dc.subjectmismatched transmission linesen_US
dc.subjectmetal linesen_US
dc.subjectloss analysisen_US
dc.subjectquarter-wavelength combineren_US
dc.subjectpower attenuation expressionen_US
dc.subjectcomplementary metal-oxide-semiconductor PA designen_US
dc.subjectmillimetre-wave power amplifieren_US
dc.subjectvoltage wave multireflectionen_US
dc.subjectdrain-bias shunt stuben_US
dc.subjectDC-blocking capacitoren_US
dc.subjectcascode transistorsen_US
dc.subjectfrequency 77en_US
dc.subject0 GHz to 110en_US
dc.subject0 GHzen_US
dc.subjectsize 40 nmen_US
dc.titleIL analysis for 8-way power combining network in 77-110 GHz 40 nm-complementary metal-oxide-semiconductor PA designen_US
dc.typeArticleen_US
dc.identifier.doi10.1049/iet-cds.2019.0074en_US
dc.identifier.journalIET CIRCUITS DEVICES & SYSTEMSen_US
dc.citation.volume13en_US
dc.citation.issue8en_US
dc.citation.spage1181en_US
dc.citation.epage1186en_US
dc.contributor.department電機學院zh_TW
dc.contributor.departmentCollege of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000501602000009en_US
dc.citation.woscount0en_US
Appears in Collections:Articles