Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Golder, Jan | en_US |
dc.contributor.author | Lin, Chiao-Wen | en_US |
dc.contributor.author | Chen, Chin-Ti | en_US |
dc.date.accessioned | 2020-01-02T00:04:20Z | - |
dc.date.available | 2020-01-02T00:04:20Z | - |
dc.date.issued | 2019-11-01 | en_US |
dc.identifier.issn | 0009-4536 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/jccs.201900123 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/153378 | - |
dc.description.abstract | Six materials were used as an interlayer at the anode side (anode interlayer [AIL]) of an archetypical planar heterojunction organic solar cell (OSC). In addition to two conventional wide bandgap hole transport materials (HTMs), tris(4-carbazol-9-ylphenyl)amine (TCTA) and trans-4,4 '-bis[N-(naphthalen-1-yl)-N-phenylamino]stilbene (NPAE), we explore four narrow bandgap materials, bis(biphenylaminospiro)-fumaronitrile (PhSPFN), bis(N-(naphthalen-1-yl)-N-phenylamino)anthraquinone (NPAAnQ), bis-(di(2-fluorophenyl)aminospiro)-fumaronitrile (FPhSPFN), and bis[4-(N-(pyren-1-yl)-N-phenylamino)phenyl]fumaronitrile (PyPAFN), the energy levels of which essentially align with the ones of SubPc, the active light-absorbing material of the OSC study herein. By using a narrow bandgap AIL, universally enhanced short-circuit current density and power conversion efficiencies (PCEs) have been achieved. In addition, one of these materials, FPhSPFN, results in a PCE of 5.13%, which is the highest reported value for SubPc solar cells with a similar architecture. This is ascribed to the formation of an otherwise passive exciton-blocking interface. Furthermore, this demonstrates that charge selectivity by way of a high-lying lowest unoccupied molecular orbital (LUMO) energy level is not a prerequisite for successful AIL design. As such, in terms of energy level alignment and bandgap energies, we establish a viable alternative approach toward interface and interlayer material design. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | AIL | en_US |
dc.subject | EBL | en_US |
dc.subject | exciton blocking | en_US |
dc.subject | HTL | en_US |
dc.subject | HTM | en_US |
dc.subject | planar heterojunction | en_US |
dc.subject | SubPc | en_US |
dc.title | Anode interlayer in organic photovoltaics: Narrow bandgap small molecular materials as exciton-blocking layer | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/jccs.201900123 | en_US |
dc.identifier.journal | JOURNAL OF THE CHINESE CHEMICAL SOCIETY | en_US |
dc.citation.volume | 66 | en_US |
dc.citation.issue | 11 | en_US |
dc.citation.spage | 1550 | en_US |
dc.citation.epage | 1560 | en_US |
dc.contributor.department | 應用化學系 | zh_TW |
dc.contributor.department | Department of Applied Chemistry | en_US |
dc.identifier.wosnumber | WOS:000497243200020 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |