完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHu, C. H.en_US
dc.contributor.authorChen, Y. C.en_US
dc.contributor.authorYu, P. J.en_US
dc.contributor.authorFung, K. Y.en_US
dc.contributor.authorHsueh, Y. C.en_US
dc.contributor.authorLiaw, P. K.en_US
dc.contributor.authorYeh, J. W.en_US
dc.contributor.authorHu, A.en_US
dc.date.accessioned2020-02-02T23:54:26Z-
dc.date.available2020-02-02T23:54:26Z-
dc.date.issued2019-12-23en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.5114974en_US
dc.identifier.urihttp://hdl.handle.net/11536/153482-
dc.description.abstractAlthough the connection between symmetry and entropy is not clear, researchers calculate configurational entropy with an ideal gas mixing model all along regardless of which structure they are considering. However, it is obvious that crystalline structures have symmetry, while an ideal gas does not. Therefore, the same ideal gas mixing value should not be assigned to other structures, such as face-centered-cubic (fcc) and hexagonal-close-packed (hcp) structures. Here, we offer a precise definition for determining the configurational entropy of crystals. We calculate the difference in configurational entropy between fcc and hcp structures based on Burnside's lemma in combinatorial mathematics and crystallographic rotation-point groups.en_US
dc.language.isoen_USen_US
dc.titleFrom symmetry to entropy: Crystal entropy difference strongly affects early stage phase transformationen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.5114974en_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.citation.volume115en_US
dc.citation.issue26en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000505613600027en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文